Tag Archives: Prosthesis Construction

Surgical Planning and Prosthesis Construction Using Computer Technology and Medical Imaging for Immediate Loading of Implants in the Pterygomaxillary Region

Stephen F. Balshi, MBE / Glenn J. Wolfinger, DMD, FACP / Thomas J. Balshi, DDS, PhD, FACP

Int J Periodontics Restorative Dent 2006;26:239 247.

This report describes a protocol that uses computerized tomography (CT), computer-aided design/computer-assisted manufacture (CAD/CAM) technology, and the Internet to plan placement of anterior and posterior dental implants and construct a precise surgical template and definitive prosthesis, which is connected at the time of implant placement. This procedure drastically reduces surgical treatment time and the recovery period. Patients with an edentulous arch had a denture with radiopaque markers constructed for CT scans of the appropriate jaw. The CT images, with acquisition slices of 0.5 mm, were transferred into a three-dimensional image-based program for planning and strategic placement of dental implants. After implants were virtually placed on the computer, the surgical treatment plan was sent to a manufacturing facility for construction of a surgical template and the prosthesis. Special surgical guide components were also manufactured for placement of implants in the pterygomaxillary region. The manufactured surgical components, surgical template, and definitive prosthesis were then delivered to the clinical site. Implant placement surgery was performed using the surgical template, without a flap, and the prosthesis was delivered, achieving immediate functional loading. Minor occlusal adjustments were made. The total surgical treatment time required was less than 60 minutes. Postoperative symptoms, such as pain, swelling, and inflammation, were minimal. Identification of the bone in relationship to the tooth position via three-dimensional CT prior to surgery allows precise placement of implants. CAD/CAM technology using the three-dimensional images allows for fabrication of the surgical guide and final prosthesis. This is a significant advancement in implant dentistry and prosthodontics.

Article in PDF

Surgical planning and prosthesis construction using computed tomography, CAD/CAM technology, and the Internet for immediate loading of dental implants

J Esthet Restor Dent. 2006;18(6):312-23; discussion 324-5.

Balshi SF, Wolfinger GJ, Balshi TJ.
CM Ceramics USA, Mahwah, NJ, USA. balshi2@aol.com

This report describes a protocol that uses computer technology and medical imaging to virtually place anterior and posterior dental implants and to construct a precise surgical template and prosthesis, which is connected at the time of implant placement. This procedure drastically reduces patient office time, surgical treatment time, and the degree of post-treatment recovery. Patients with an edentulous arch or a partially edentulous area had a denture with radiopaque markers constructed for computed tomography (CT) scans of the appropriate jaw. The CT images, having acquisition slices of 0.4 mm, are transposed in a three-dimensional image-based program for planning and strategic placement of dental implants. After virtual implant placement on the computer, the surgical treatment plan is sent to a manufacturing facility for construction of the surgical template. The manufactured surgical components and surgical template arrive on the clinical site. From the surgical template, the dental laboratory retro-engineers the master cast, articulates it with the opposing dentition based on a duplicate of the scanning denture, and creates the prosthesis. Using the surgical template, minimally invasive surgery is performed without a flap, and the prosthesis is delivered, achieving immediate functional loading to the implants. Minor occlusal adjustments are made. The total surgical treatment time required is typically between 30 and 60 minutes. Postoperative symptoms such as pain, swelling, and inflammation are dramatically reduced.

CLINICAL SIGNIFICANCE: Identification of the bone in relationship to the tooth position via three-dimensional CT prior to surgery allows the clinician to precisely place implants. Computer-aided design/computer-assisted manufacture technology using the three-dimensional images allows for fabrication of the surgical template. This is a significant advancement in implant dentistry and promotes interdisciplinary approaches to patient treatment. The implant surgeon and restorative dentist can agree upon implant locations and screw access locations prior to the surgical episode.

Article in PDF